Epsilla
HomeDiscordTwitterGithubEmail
  • Welcome
    • Register and Login
    • Explore App Portal
  • Build Your First AI Agent
    • Create a Knowledge Base
    • Set Up Your AI Agent
    • Publish Your AI Agent
  • Knowledge Base
    • Local Files
    • Website
    • Google Drive
    • S3
    • Notion
    • Share Point
    • Google Cloud Storage
    • Azure Blob Storage
    • Confluence
    • Jira
    • Advanced Settings
      • Auto Sync
      • Embedding
      • Data Parsing
      • Data Chunking
      • Hypothetical Questions
      • Webhook
      • Meta Data
    • Data Storage
    • Programmatically Manage Knowledge Bases
  • Application
    • Create New AI Agent
    • Basic Chat Agent Config
    • Basic Smart Search Agent Config
    • Advanced Workflow Customization
    • Publish and Deployment
    • User Engagement Analytics
  • Evaluation
    • Create New Evaluation
    • Run Evaluation
    • Evaluation Run History
  • Integration
  • Team Member Management
  • Project Management
  • Billing Management
  • Release Notes
  • Epsilla Vector Database
    • Overview
    • Quick Start
      • Run with Docker
      • Epsilla Cloud
    • User Manual
      • Connect to a database
      • Create a new table
      • Drop a table
      • Delete a database
      • Insert records
      • Upsert records
      • Search the top K semantically similar records
      • Retrieve records (with filters and pagination)
      • Delete records
      • Performance Tuning
    • Advanced Topics
      • Embeddings
      • Dense vector vs. sparse vector
      • Hybrid Search
    • Integrations
      • OpenAI
      • Mistral AI
      • Jina AI
      • Voyage AI
      • Mixedbread AI
      • Nomic AI
    • Roadmap
Powered by GitBook
On this page
  1. Epsilla Vector Database
  2. Integrations

Mistral AI

PreviousOpenAINextJina AI

Last updated 11 months ago

On Epsilla Cloud, you can enable Mistral AI integration by providing your Mistral AI API key (we securely manage your keys using AWS KMS):

Embeddings

Epsilla integrates with Nomic AI with the following embedding models.

Name
Dimensions

mistralai/mistral-embed

1024

Then you can start using the nomicai embedding model during vector table schema creation:

For Epsilla open source vector db, you just need to add a header in the data ingestion and semantic search queries .

like this