Epsilla
HomeDiscordTwitterGithubEmail
  • Welcome
    • Register and Login
    • Explore App Portal
  • Build Your First AI Agent
    • Create a Knowledge Base
    • Set Up Your AI Agent
    • Publish Your AI Agent
  • Knowledge Base
    • Local Files
    • Website
    • Google Drive
    • S3
    • Notion
    • Share Point
    • Google Cloud Storage
    • Azure Blob Storage
    • Confluence
    • Jira
    • Advanced Settings
      • Auto Sync
      • Embedding
      • Data Parsing
      • Data Chunking
      • Hypothetical Questions
      • Webhook
      • Meta Data
    • Data Storage
    • Programmatically Manage Knowledge Bases
  • Application
    • Create New AI Agent
    • Basic Chat Agent Config
    • Basic Smart Search Agent Config
    • Advanced Workflow Customization
    • Publish and Deployment
    • User Engagement Analytics
  • Evaluation
    • Create New Evaluation
    • Run Evaluation
    • Evaluation Run History
  • Integration
  • Team Member Management
  • Project Management
  • Billing Management
  • Release Notes
  • Epsilla Vector Database
    • Overview
    • Quick Start
      • Run with Docker
      • Epsilla Cloud
    • User Manual
      • Connect to a database
      • Create a new table
      • Drop a table
      • Delete a database
      • Insert records
      • Upsert records
      • Search the top K semantically similar records
      • Retrieve records (with filters and pagination)
      • Delete records
      • Performance Tuning
    • Advanced Topics
      • Embeddings
      • Dense vector vs. sparse vector
      • Hybrid Search
    • Integrations
      • OpenAI
      • Mistral AI
      • Jina AI
      • Voyage AI
      • Mixedbread AI
      • Nomic AI
    • Roadmap
Powered by GitBook
On this page
  1. Epsilla Vector Database
  2. Integrations

Voyage AI

PreviousJina AINextMixedbread AI

Last updated 3 months ago

On Epsilla Cloud, you can enable Voyage AI integration by providing your Voyage AI API key (we securely manage your keys using AWS KMS):

Embeddings

Epsilla integrates with Voyage AI with the following embedding models:

Name
Dimensions

voyageai/voyage-3-large

1024

voyageai/voyage-3

1024

voyageai/voyage-3-lite

512

voyageai/voyage-code-3

1024

voyageai/voyage-large-2

1536

voyageai/voyage-2

1024

voyageai/voyage-code-2

1536

voyageai/voyage-lite-02-instruct

1024

Then you can start using the voyageai embedding models during vector table schema creation:

For Epsilla open source vector db, you just need to add a header in the data ingestion and semantic search queries .

like this